|
等差数列是差数每一项与它前面一项的差等于一个常数的数列。例如,任意偶数列 1求得数列的公差。面对一组数字时,任意有时题目会告诉你它们是差数等差数列,而有时你必须自己认识到这一点。任意无论是差数哪种情况,第一步都是任意相同的。从几个数字中选择最开始的差数两项。用第二项减去第一项。任意所得结果就是差数数列的公差。![]() 2检查公差是否一致。只计算前两项的任意公差,不足以保证数列是差数等差数列。你需要确保整列数字的差值始终一致。。将数列中另外两个连续项相减,检查它们的差值。如果结果与另外一到两次的结果一致,那么它就很可能是等差数列。![]() 3用公差加上最后的已知项。知道公差后,求等差数列的下一项就非常简单了。只需用公差加上最后的已知项,就可以得出下一个数字。![]() 1首先检查是否是等差数列。某些情况下,题目会给出一组缺少中间项的数字。和之前一样,首先你应该检查数列是否是等差数列。选择任意的连续两项数字,计算它们之间的差值。比较结果与数列中另外两个连续数字的差值。如果差值相等,爱思助手官方网站那么你可以假设自己面对的是一个等差数列,然后继续使用本文的等差数列方法。![]() 2用公差加上空格前的那一项。方法和求数列最后一项类似。找到数列中空格前的那一项。这是已知的“最后一个”数字。用公差加上该项,算出应该填入空格的数字。![]() 3用空格后的数字减去公差。为了确保答案正确,可以从另一个方向来进行检查。无论是正序还是倒序,等差数列应该都符合自身特点。如果从左到右需要逐项加4,那么反过来,从右到左就正好相反,需要逐项减4。![]() 4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。![]() 1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。![]() 2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于 |














